
Skeena: Efficient and Consistent Cross-Engine Transactions
Jianqiu Zhang, Kaisong Huang, Tianzheng Wang - Simon Fraser University

King Lv - Huawei Cloud Database Innovation Lab

SIGMOD 2022

What? Modern DBMSs support multiple engines, but applications can’t cross engine boundaries.

Why? Lack of cross-engine support in terms of correctness, performance and programmability.

How? Devise a lightweight snapshot tracking structure and an atomic commit protocol.

DBMSs Going Multi-Engine Cross-Engine Transactions

• Memory-optimized OLTP engines

• Orders of magnitude better perf.

• Storage-centric engines still useful

• Cost-effective, backward compatibility

Common SQL Layer (parser, networking...)

Transaction S:
SELECT * FROM Orders...

Storage-Centric EngineMemory-Optimized Engine

Products

Transaction T:
SELECT * FROM Products, Orders

Orders
Sub-xct S1

Sub-xct T1

Sub-xct T2

Anomaly 1: Inconsistent Snapshots Anomaly 2: Serializability

(a) Skewed snapshot (b) Isolation failure

Engine E1

Timeline:

Engine E2

Timeline:

1000

S1

(Begin)

T2

(Begin)

100

3000

T1

(Begin)

S2

(Begin)

200

4000

T1

(Commit)

U2

(Begin)

250

5000

U1

(Begin)

T2

(Commit)

300

Skeena Overview

(a) S uses an older (newer) snapshot in E1 (E2).

(b) U sees T1’s results, but does not see T2’s.

(a) Each engine executes a serializable schedule (b) without

cyclic dependencies. (c) Overall cyclic dependency between

𝑇 and 𝑆 .

Engine E2

Products

Engine E1

Orders

Cross-Engine Snapshot Registry

Cross-engine transaction T:
BEGIN
SELECT … FROM Orders …
SELECT … FROM Products …
UPDATE Products SET …
COMMIT

E1 Snapshot E2 Snapshot

40 (S) 1200

80 (T) ?

160 (U) 3000

.

Commit Queue

R: 50, nil

T: 90, 2000

U: 200, 4000

. . .

1

2

2

3

4

4

Enqueue/
dequeue

1
2
3
4

0

Design principles: 1) low overhead, 2) engine autonomy, 3) full functionality, 4) transparent adoption

❶ Transactions access data without explicitly declaring

whether they are cross-engine.

❷ Upon accessing an additional engine, the transaction

❸ consults CSR to obtain a proper snapshot.

❹Cross-engine transactions use CSR for commit check

and if passed, goes through the pipelined commit

protocol.

Recommended End-to-End Cross-Engine TPC-C

Implementation

* ERMIA (main-memory) + InnoDB (traditional) in MySQL

Three recommended table placement schemes:

• New-Order-Opt: Customer and Item in ERMIA to optimize

the New-Order transaction.

• Payment-Opt: Only Customer in ERMIA to optimize the

Payment transaction

• Archive: All the tables but History in InnoDB for lower

storage cost

Desirable: multiple engines in one system + use the right

engine for the right data and workloads

https://github.com/sfu-dis/skeena

