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What? Modern DBMSs support multiple engines, but applications can’t cross engine boundaries.
Why? Lack of cross-engine support in terms of correctness, performance and programmability.
How? Devise a lightweight snapshot tracking structure and an atomic commit protocol.
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Skeena Overview

Design principles: 1) low overhead, 2) engine autonomy, 3) full functionality, 4) transparent adoption
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Implementation
* ERMIA (main-memory) + InnoDB (traditional) in MySQL

Three recommended table placement schemes:

e New-Order-Opt: Customer and Item in ERMIA to optimize

Tables in ERMIA

the New-Order transaction.

e Payment-Opt: Only Customer in ERMIA to optimize the

Payment transaction

e Archive: All the tables but History in InnoDB for lower
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