Skeena: Efficient and Consistent Cross-Engine Transactions

Jianqgiu Zhang, Kaisong Huang, Tianzheng Wang - Simon Fraser University \")
King Lv - Huawei Cloud Database Innovation Lab SF U [eeaaiisnit EAVﬁ

SIGMOD 2022 https://github.com/sfu-dis/skeena

What? Modern DBMSs support multiple engines, but applications can’t cross engine boundaries.
Why? Lack of cross-engine support in terms of correctness, performance and programmability.
How? Devise a lightweight snapshot tracking structure and an atomic commit protocol.

DBMSs Going Multi-Engine Cross-Engine Transactions

. _ Transaction S: Transaction T:
* Memory-optimized OLTP engines SELECT * FROM Orders... SELECT * FROM Products, Orders
i

HEKATON Orders of magnitude better pert.

|

|

. |
Microsoft® I
|

|

|

SQLServer . siorage-centric engines still useful

Common SQL Layer (parser, networking...) i

@' Cost-effective, backward compatibility Memory-Optimized Engine Storage-Centric Engine

| | | | | L L $ Sub-xct S, L ' $ Sub-xct T
Desirable: multiple engines in one system + use the right Orders | ¢ sup-xct T, Products HR-XCL 1
engine for the right data and workloads

Anomaly 1: Inconsistent Snapshots gAnomaly 2: Serializability

Engine, 1000 3009 480 OO Engine £, Engine £, (@), @) !

|

Timeline: S1 I T, N 7 U TRCA) i =

(Begin) \>{; (Begin) (Commit) \x/ (Begin) o Lo T WCB,) i . i

T2 ,/ ~ SZ U2 ,/ \s T2 = Sl\l\’(Al) . .@ .@ i --'i

Begi Begi (Begin) (Commit) P S,R(Bo) - I I

Engine E, (Begin) (Begin) S (b) Dependency inE; L L
Timeline: 100 200 250 300 (a) Overall schedule (top) and E, (bottom) (c) Overall dependency

(a) Skewed snapshot (b) Isolation failure

(a) Each engine executes a serializable schedule (b) without

() S uses an older (newer) snapshot in E, (E,). cyclic dependencies. (c) Overall cyclic dependency between
(b) U sees T,’s results, but does not see T,'s. Tand S

Skeena Overview

Design principles: 1) low overhead, 2) engine autonomy, 3) full functionality, 4) transparent adoption

Cross-engine transaction T: Engine E, €@ Transactions access data without explicitly declaring

@ BEGIN .
@ SELECT .. FROM Orders .. whether they are cross-engine.
@ SELECT .. FROM Products

© UPDATE Products SET .. Engine E,

@ COMMIT
[roducts_

Cross-Engine Snapshot Registry

/| el ,
E Snapshot | E,Snapshot | @_<C% Commit Queve |}
25 o; . . _
B Enqueue/ O Cross-engine transactions use CSR for commit check
(U)

@ Upon accessing an additional engine, the transaction
€ consults CSR to obtain a proper snapshot.

30 (1) o .
dequeue and If passed, goes through the pipelined commit

A/

protocol.

+Stock (100% ERMIA)
+Order-Line
+New-Orders [} .

+Orders| 0.82 9.3

+History| 0.81 9.1

+District| 0.83 0.1

+Woarehouse| 0.78 9

+ltem| 0.81 8.7

+Customer| 0.74 8.7

100% InnoDB| 0.64 7.4

Implementation
* ERMIA (main-memory) + InnoDB (traditional) in MySQL

Three recommended table placement schemes:

e New-Order-Opt: Customer and Item in ERMIA to optimize

Tables in ERMIA

the New-Order transaction.

e Payment-Opt: Only Customer in ERMIA to optimize the

Payment transaction

e Archive: All the tables but History in InnoDB for lower

Full-Mix

Stock-Level |-

storage cost

