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What? Modern DBMSs support multiple engines, but applications can’t cross engine boundaries. 

Why?  Lack of cross-engine support in terms of correctness, performance and programmability. 

How?  Devise a lightweight snapshot tracking structure and an atomic commit protocol.

DBMSs Going Multi-Engine Cross-Engine Transactions

• Memory-optimized OLTP engines

• Orders of magnitude better perf.

• Storage-centric engines still useful

• Cost-effective, backward compatibility

Common SQL Layer (parser, networking...)

Transaction S:
SELECT * FROM Orders...

Storage-Centric EngineMemory-Optimized Engine

Products

Transaction T:
SELECT * FROM Products, Orders

Orders
Sub-xct S1
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Anomaly 1: Inconsistent Snapshots Anomaly 2: Serializability

(a) Skewed snapshot (b) Isolation failure
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Skeena Overview

(a) S uses an older (newer) snapshot in E1 (E2).

(b) U sees T1’s results, but does not see T2’s.

(a) Each engine executes a serializable schedule (b) without 

cyclic dependencies. (c) Overall cyclic dependency between 

𝑇 and 𝑆 . 
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Cross-Engine Snapshot Registry

Cross-engine transaction T:
BEGIN
SELECT … FROM Orders …
SELECT … FROM Products …
UPDATE Products SET … 
COMMIT
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Design principles: 1) low overhead, 2) engine autonomy, 3) full functionality, 4) transparent adoption

❶ Transactions access data without explicitly declaring

whether they are cross-engine.

❷ Upon accessing an additional engine, the transaction

❸ consults CSR to obtain a proper snapshot.

❹Cross-engine transactions use CSR for commit check

and if passed, goes through the pipelined commit

protocol.

Recommended End-to-End Cross-Engine TPC-C

Implementation

* ERMIA (main-memory) + InnoDB (traditional) in MySQL

Three recommended table placement schemes:

• New-Order-Opt: Customer and Item in ERMIA to optimize 

the New-Order transaction.

• Payment-Opt: Only Customer in ERMIA to optimize the 

Payment transaction

• Archive: All the tables but History in InnoDB for lower 

storage cost

Desirable: multiple engines in one system + use the right 

engine for the right data and workloads

https://github.com/sfu-dis/skeena


