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The Persistent Memory (PM) Landscape
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* On the Diversity of Memory and Storage Technologies, I. Oukid, L. Lersch, Datenbank-Spektrum, 2018

Byte-addressable, durability on the memory bus
WIPs
• STT-MRAM, Carbon NanoTube

Now on the market
• Intel Optane DCPMM
• NVDIMMs

Properties (except NVDIMM-N):
+ Energy efficient
+ Scales, high density, cheaper
– Higher read/write latency
– Read/write asymmetry
– Limited lifetime



Range Indexes on Persistent Memory
Single level storage:
• Persist data on PM without I/O
• No serialization/deserialization cost
• Indexing for larger datasets
• Instant recovery

Challenges:
• Consistency - 8-byte atomic write
• Performance - scarce write bandwidth
• Recovery - avoid persistent memory leak
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Previously on PM Range Indexes* (Pre-2019)
• Proposed under emulation, evaluated under Optane PMem

Key takeaways: should save bandwidth + leverage DRAM + finterprinting
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​Index Architecture​ Node Architecture Concurrency​

wBTree [VLDB ’15]​ PM-only​ Unsorted; 
Indirection array

Single-threaded

NV-Tree [FAST ’15]​ DRAM + PM Unsorted leaf;
Inconsistent inner node

Locking

FPTree [SIGMOD ’16] DRAM + PM Unsorted Leaf;
Fingerprints

HTM (inner) + 
Locking (leaf)

BzTree [VLDB ’18]​ PM-only Partially unsorted leaf​ Lock-free​ + 
PMwCAS

* Evaluating Persistent Memory Range Indexes, VLDB 2020

“Old King”



This Episode: PM Range Indexes 2019-2022
• Even more indexes

• 10s of papers in VLDB/SIGMOD/SOSP, etc.

• How do they compare against each other?
• How are they different/similar from previous work?

• Are they really better?

• What further challenges and opportunities remain?

• Optane going away - should I still care?
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B+-tree variants: LB+-Tree* and uTree
• Inner nodes in DRAM
• Leaf nodes in PM

• HTM for traversal, locking for updates

• Techniques to avoid:
• Cache misses
• Logging overhead
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* LB+-Trees: optimizing persistent index performance on 3DXPoint memory, VLDB 2020

256B: PMem 
internal block size

Unsorted leaf 
(cf. FPTree)



B+-tree variants: LB+-Tree and uTree*
• Optimized for tail latency

• Coordinated concurrency control:
• Traverse B+-Tree, find predecessor node
• Update list layer using atomic CAS
• Lock array layer leaf and update entry
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* μTree: a Persistent B+-Tree with Low Tail Latency, VLDB 2020

Entire B+-tree in 
DRAM

Linked list 
in PM



Trie variants: ROART* and PACTree
• Optimized for range scan
• Based on ART

• Compact subtrees into leaf arrays
• Delayed Check Memory Management
• Concurrency

• ART-ROWEX
• Non-temporal stores
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*ROART: Range-query Optimized Persistent ART, FAST 2021

Entirely in PM



Trie variants: ROART and PACTree*
• Search layer: persistent trie
• Data layer: linked list of leaves
• NUMA-aware

• Per-node PM pool

• Asynchronous update
• SMOs by background threads

• Concurrency
• ROWEX for search layer
• Locking for data layer
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* PACTree: A High Performance Persistent Range Index Using PAC Guidelines, SOSP 2021

Entirely in PM

Runs in 
background



Hybrid: DPTree*
• Front Buffer Tree 

• B+-tree
• For updates with logging

• Base Tree
• Trie for inner nodes
• B+-Tree style leaf nodes
• Accumulates front buffer trees
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*DPTree: differential indexing for persistent memory, VLDB 2020

Entire B+-trees in 
DRAM



Design Summary
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Architecture Node structure Concurrency

LB+-Tree [VLDB 20] B+-tree; DRAM (inner) +
PM (leaf)

Unsorted leaf; fingerprints;
extra metadata

HTM (inner) + lock-
ing (leaf)

uTree [VLDB 20] B+-tree; DRAM (B+-tree)
+ PM (linked list)

Sorted Locking (array layer)
+ lock-free (list layer)

DPTree [VLDB 20] Hybrid; DRAM (B+-tree,
trie inner)+PM(trieleaf)

Unsorted leaf; fingerprints;
indirection; extra metadata

Optimistic lock +
async. updates

ROART [FAST 21] Trie; PM-only B+-tree like unsorted leaf;
fingerprints

ROWEX

PACTree [SOSP 21] Trie; PM-only or option-
ally DRAM+PM

Unsorted leaf; fingerprints;
indirection

Optimistic lock +
async. UpdateNUMA-

optimized

Support 
var-keys

FPTree
[SIGMOD 16]

DRAM (inner nodes) + PM 
(leaf nodes)

Unsorted leaf nodes Selective (HTM + 
locking)

(largely) 
optimistic

(largely) 
unsorted + 

extra metadata



Experimental Setup
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Benchmarking Framework:

• PiBench [VLDB 2020]

• Metrics: throughput, latency, memory stats…

• Original authors’ code as shared libraries

Methodology:

1. Preload index with 100M 8B key/value pairs

2. Execute 10 seconds of operations

Benchmarking Machine:

• 40-core dual-socket Xeon 6242R 3.1Ghz

• 384GB DRAM (12x32GB)

• 1.5TB Optane PMem 100 (12x128GB)

• Linux kernel 5.14.9

Allocators

• jemalloc for DRAM allocation

• PMDK for PM allocation



The Old       : Not over the hill yet
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FPTree still very competitive; new != better

New techniques + using DRAM (more aggressively) help a lot

ROART: Under-
utilized leaves

uTree: 
Pointer chasing 

overhead



Scalability (Single-Socket)
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Larger leaf nodes 
➔ Better scanOptimistic 

concurrency

DPTree: 
High merge
overhandDesign goals often conflict

E.g., LB+-Tree tops for all ops other than scan



Variable-length keys: Same 8B keys, opposite trends
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Handling NUMA: No Ideal Candidate
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Beyond one socket (20 threads), coherence traffic dominates



Life without Optane: 2022+
• Running PM range indexes on DRAM

• Sans flushes and fences, using DRAM allocator

PM index technique also effective for DRAM
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Conclusion
• New/more complex designs != Better

• Time to rethink and focus on simpler designs, if possible

• Still lacking in full functionality
• NUMA effect
• Variable length key support

• Why care even without Optane?
• Using the techniques as DRAM optimizations
• WIP PM media coming up

17Evaluating Persistent Memory Range Indexes: Part Two

Thank you!

More in our paper and code repo:
github.com/sfu-dis/pibench-ep2
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