
Evaluating Persistent Memory Range Indexes:
Part Two

Yuliang (George) He Duo Lu Kaisong Huang Tianzheng Wang

The Persistent Memory (PM) Landscape

1Evaluating index structures on persistent memory

* On the Diversity of Memory and Storage Technologies, I. Oukid, L. Lersch, Datenbank-Spektrum, 2018

Byte-addressable, durability on the memory bus
WIPs
• STT-MRAM, Carbon NanoTube

Now on the market
• Intel Optane DCPMM
• NVDIMMs

Properties (except NVDIMM-N):
+ Energy efficient
+ Scales, high density, cheaper
– Higher read/write latency
– Read/write asymmetry
– Limited lifetime

Range Indexes on Persistent Memory
Single level storage:
• Persist data on PM without I/O
• No serialization/deserialization cost
• Indexing for larger datasets
• Instant recovery

Challenges:
• Consistency - 8-byte atomic write
• Performance - scarce write bandwidth
• Recovery - avoid persistent memory leak

2Evaluating Persistent Memory Range Indexes: Part Two

Root

Inner
node

Inner
node

KV pairs KV pairs KV pairs KV pairs

Could be in
DRAM or PM

PM-
resident

Unsorted,
fingerprints

Previously on PM Range Indexes* (Pre-2019)
• Proposed under emulation, evaluated under Optane PMem

Key takeaways: should save bandwidth + leverage DRAM + finterprinting

3Evaluating Persistent Memory Range Indexes: Part Two

​Index Architecture​ Node Architecture Concurrency​

wBTree [VLDB ’15]​ PM-only​ Unsorted;
Indirection array

Single-threaded

NV-Tree [FAST ’15]​ DRAM + PM Unsorted leaf;
Inconsistent inner node

Locking

FPTree [SIGMOD ’16] DRAM + PM Unsorted Leaf;
Fingerprints

HTM (inner) +
Locking (leaf)

BzTree [VLDB ’18]​ PM-only Partially unsorted leaf​ Lock-free​ +
PMwCAS

* Evaluating Persistent Memory Range Indexes, VLDB 2020

“Old King”

This Episode: PM Range Indexes 2019-2022
• Even more indexes

• 10s of papers in VLDB/SIGMOD/SOSP, etc.

• How do they compare against each other?
• How are they different/similar from previous work?

• Are they really better?

• What further challenges and opportunities remain?

• Optane going away - should I still care?

4Evaluating index structures on persistent memory

B+-tree variants: LB+-Tree* and uTree
• Inner nodes in DRAM
• Leaf nodes in PM

• HTM for traversal, locking for updates

• Techniques to avoid:
• Cache misses
• Logging overhead

5Evaluating Persistent Memory Range Indexes: Part Two

* LB+-Trees: optimizing persistent index performance on 3DXPoint memory, VLDB 2020

256B: PMem
internal block size

Unsorted leaf
(cf. FPTree)

B+-tree variants: LB+-Tree and uTree*
• Optimized for tail latency

• Coordinated concurrency control:
• Traverse B+-Tree, find predecessor node
• Update list layer using atomic CAS
• Lock array layer leaf and update entry

6Evaluating Persistent Memory Range Indexes: Part Two

* μTree: a Persistent B+-Tree with Low Tail Latency, VLDB 2020

Entire B+-tree in
DRAM

Linked list
in PM

Trie variants: ROART* and PACTree
• Optimized for range scan
• Based on ART

• Compact subtrees into leaf arrays
• Delayed Check Memory Management
• Concurrency

• ART-ROWEX
• Non-temporal stores

7Evaluating index structures on persistent memory

*ROART: Range-query Optimized Persistent ART, FAST 2021

Entirely in PM

Trie variants: ROART and PACTree*
• Search layer: persistent trie
• Data layer: linked list of leaves
• NUMA-aware

• Per-node PM pool

• Asynchronous update
• SMOs by background threads

• Concurrency
• ROWEX for search layer
• Locking for data layer

8Evaluating index structures on persistent memory

* PACTree: A High Performance Persistent Range Index Using PAC Guidelines, SOSP 2021

Entirely in PM

Runs in
background

Hybrid: DPTree*
• Front Buffer Tree

• B+-tree
• For updates with logging

• Base Tree
• Trie for inner nodes
• B+-Tree style leaf nodes
• Accumulates front buffer trees

9Evaluating Persistent Memory Range Indexes: Part Two

*DPTree: differential indexing for persistent memory, VLDB 2020

Entire B+-trees in
DRAM

Design Summary

10Navigating the Storage Jungle

Architecture Node structure Concurrency

LB+-Tree [VLDB 20] B+-tree; DRAM (inner) +
PM (leaf)

Unsorted leaf; fingerprints;
extra metadata

HTM (inner) + lock-
ing (leaf)

uTree [VLDB 20] B+-tree; DRAM (B+-tree)
+ PM (linked list)

Sorted Locking (array layer)
+ lock-free (list layer)

DPTree [VLDB 20] Hybrid; DRAM (B+-tree,
trie inner)+PM(trieleaf)

Unsorted leaf; fingerprints;
indirection; extra metadata

Optimistic lock +
async. updates

ROART [FAST 21] Trie; PM-only B+-tree like unsorted leaf;
fingerprints

ROWEX

PACTree [SOSP 21] Trie; PM-only or option-
ally DRAM+PM

Unsorted leaf; fingerprints;
indirection

Optimistic lock +
async. UpdateNUMA-

optimized

Support
var-keys

FPTree
[SIGMOD 16]

DRAM (inner nodes) + PM
(leaf nodes)

Unsorted leaf nodes Selective (HTM +
locking)

(largely)
optimistic

(largely)
unsorted +

extra metadata

Experimental Setup

11Evaluating Persistent Memory Range Indexes: Part Two

Benchmarking Framework:

• PiBench [VLDB 2020]

• Metrics: throughput, latency, memory stats…

• Original authors’ code as shared libraries

Methodology:

1. Preload index with 100M 8B key/value pairs

2. Execute 10 seconds of operations

Benchmarking Machine:

• 40-core dual-socket Xeon 6242R 3.1Ghz

• 384GB DRAM (12x32GB)

• 1.5TB Optane PMem 100 (12x128GB)

• Linux kernel 5.14.9

Allocators

• jemalloc for DRAM allocation

• PMDK for PM allocation

The Old : Not over the hill yet

12Evaluating Persistent Memory Range Indexes: Part Two

FPTree still very competitive; new != better

New techniques + using DRAM (more aggressively) help a lot

ROART: Under-
utilized leaves

uTree:
Pointer chasing

overhead

Scalability (Single-Socket)

13Evaluating Persistent Memory Range Indexes: Part Two

Larger leaf nodes
➔ Better scanOptimistic

concurrency

DPTree:
High merge
overhandDesign goals often conflict

E.g., LB+-Tree tops for all ops other than scan

Variable-length keys: Same 8B keys, opposite trends

14Evaluating Persistent Memory Range Indexes: Part Two

Th
ro

ug
hp

ut
 (M

O
ps

/s
)

8-byte integer keys 8-byte string keys
DPTree

LB+-Tree

ROART
(trie)

Th
ro

ug
hp

ut
 (M

O
ps

/s
)

May need to combine best of B+-trees and tries

Handling NUMA: No Ideal Candidate

15Evaluating Persistent Memory Range Indexes: Part Two

Beyond one socket (20 threads), coherence traffic dominates

Life without Optane: 2022+
• Running PM range indexes on DRAM

• Sans flushes and fences, using DRAM allocator

PM index technique also effective for DRAM

16Evaluating Persistent Memory Range Indexes: Part Two

Conclusion
• New/more complex designs != Better

• Time to rethink and focus on simpler designs, if possible

• Still lacking in full functionality
• NUMA effect
• Variable length key support

• Why care even without Optane?
• Using the techniques as DRAM optimizations
• WIP PM media coming up

17Evaluating Persistent Memory Range Indexes: Part Two

Thank you!

More in our paper and code repo:
github.com/sfu-dis/pibench-ep2

	New
	Slide 0: Evaluating Persistent Memory Range Indexes: Part Two
	Slide 1: The Persistent Memory (PM) Landscape
	Slide 2: Range Indexes on Persistent Memory
	Slide 3: Previously on PM Range Indexes* (Pre-2019)
	Slide 4: This Episode: PM Range Indexes 2019-2022
	Slide 5: B+-tree variants: LB+-Tree* and uTree
	Slide 6: B+-tree variants: LB+-Tree and uTree*
	Slide 7: Trie variants: ROART* and PACTree
	Slide 8: Trie variants: ROART and PACTree*
	Slide 9: Hybrid: DPTree*
	Slide 10: Design Summary
	Slide 11: Experimental Setup
	Slide 12: The Old : Not over the hill yet
	Slide 13: Scalability (Single-Socket)
	Slide 14: Variable-length keys: Same 8B keys, opposite trends
	Slide 15: Handling NUMA: No Ideal Candidate
	Slide 16: Life without Optane: 2022+
	Slide 17: Conclusion

	Default Section
	Slide 18
	Slide 19: The Persistent Memory (PM) Landscape
	Slide 20
	Slide 21: Previously on PM Range Indexes*
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

	storage-jungle
	Slide 38: General
	Slide 39: 0
	Slide 40: 1
	Slide 41: 2
	Slide 42: 4
	Slide 43: 12
	Slide 44: 14
	Slide 45: 17
	Slide 46: Question
	Slide 47

