
Evaluating Persistent Memory Range Indexes: Part Two
Yuliang He, Duo Lu, Kaisong Huang, Tianzheng Wang - Simon Fraser University
GitHub Repo: https://github.com/sfu-dis/pibench-ep2

What? Benchmark and evaluate Optane-era Persistent Memory (PM) range indexes
Why? Unclear performance they achieve on real PM hardware (Intel Optane DCPMM)
How? Utilize PiBench* to experiment on eight range indexes under various workloads

Persistent Memory (PM)

Single/Multi-Threaded Experiment Under Various Workloads

Mixed Workload Impact of NUMA Effect

Hardware & Software Configuration

CPU
Caches
SRAM

Volatile Memory

Persistent Memory

Key features:
• Byte-addressability
• Near DRAM latency
• Non-volatile
• Large capacity
• Cheaper than DRAM

PM Partners

§ 2 x 20-core (2-socket, 80-hyperthread) Intel Xeon
Gold 6242R clocked at 3.10 GHz, 12 x 32GB DRAM
(384GB), 12 x 128GB DCPMM (1.5TB)
§ Arch Linux kernel 5.14.9, GCC 11.1, glibc 2.34
§ Allocators: jemalloc for DRAM, PMDK for PM
§ PiBench: PM indexes benchmark framework

Ø 8-byte key-value pair
Ø Preload 1M keys
Ø 10s of operations each run

State-Of-The-Art Persistent Memory Range Indexes

H0 9 13 4 8 1 2 11 6 3 5 14 7 12 10 S0S1

header

H0 9 13 4 8 1 2 11 6 3 5 14 7 12 10

line 0 line 1 line 2 line 3

H1

… 1st 256B leaf node

m-th 256B leaf node

DRAM 256B inner nodes

...

…

S0

PM m x 256B leaf nodes sibling
pointers

…
B+-tree

DRAM

array layer

list layer

key

B+-tree

...
ptr

kv
...next

PM
version ptr

0 1 16 64

inner nodes

bitmap ptr

64 pointer slots

fingerprint address
64160

ARTPM

...
...

...

leaf array

...kv
...

deleted

data node

PM

ART

search layer

...

...

data layer

anchor key deleted next ptr prev ptr bitmap

fingerprint array

version lock (not persisted)

kv array

permutation array version (not persisted)

permutation array (not persisted)

PM

leaf layer

global version

DRAM

front buffer tree middle buffer tree base tree
(read-only) (read-only)

query

tail

query

insert/delete/
update

...

B+-tree B+-tree trie

parallel mergelog header table

...

pa
rt

iti
on

ed

...

...

head

valid

invalid

append

meta0 meta1 kv1 kvn

0
crash-consistent reconstructible

...

query

(b) µTree

(c) ROART

(d) PACTree

(d) DPTree

(a) LB+-tree

Throughput under uniform (a–d) and skewed (e–g, self-similar with 80% accesses on 20% of keys) distributions

Key takeaway:
§ DPTree and LB+-Tree achieve

best performance
§ PM allocator matters (PMDK vs.

ROART customized DCMM)
§ Be careful when you use

Hardware transactional Memory

Unifying PM and DRAM indexing:
§ PM indexes can also be effective

for DRAM
§ Compare to two representative

DRAM-optimized indexes
§ Techniques proposed by PM

indexes may also apply to DRAM

Throughput of mixed workloads (lookups + inserts) under uniform distribution No index scales well due to additional PM accesses by the directory-based CPU coherence protocol

