Evaluating Persistent Memory Range Indexes: Part Two

Yuliang He, Duo Lu, Kaisong Huang, Tianzheng Wang - Simon Fraser University

SIMON FRASER
UNIVERSITY

GitHub Repo: https://github.com/sfu-dis/pibench-ep2

What? Benchmark and evaluate Optane-era Persistent Memory (PM) range indexes
Unclear performance they achieve on real PM hardware (Intel Optane DCPMM)
to experiment on eight range indexes under various workloads

Why?

How? Utilize PiBench™

Persistent Memory (PM)

Key features:

[
Volatile Memory
[
[
Persistent Memory

PM Partners

Hardware & Software Configuration

2 x 20-core (2-socket, 80-hyperthread) Intel Xeon
Gold 6242R clocked at 3.10 GHz, 12 x 32GB DRAM
(384GB), 12 x 128GB DCPMM (1.5TB)

Byte-addressability
Near DRAM latency

Non-volatile " Arch Linux kernel 5.14.9, GCC 11.1, glibc 2.34
Large capacity " Allocators: jemalloc for DRAM, PMDK for PM
Cheaper than DRAM = PiBench: PM indexes benchmark framework

» 8-byte key-value pair Dane
» Preload 1M keys ‘PIBQ“C"I

» 10s of operations each run

H \Vicrosoft
Hl Azure

SAPd

ST
CISCO

State-Of-The-Art Persistent Memory Range Indexes

DRAM 256B inner nodes

line 0

m x 256B leaf nodes header

DRAM inner nodes

array layer

linel

el LLE LT L] B
. S1)

1st 256B leaf node

Dilj- 0 HIIIIIIIIIIIIIIH

m-th 256B leaf node

(a) LB*-tree

PM

fingerprint array
search layer
kv array

version lock (not perS|sted)

line 2 line 3

permutation array version (not persnsted)

data node data layer

permutation array (not persisted)

sibling _ .
pointers

DRAM

ART

//\Ieaf array

query

(read-only)
base tree

insert/delete/
update]

—¥— FPTree —A— LB*-Tree —#— ROART-PMDK —@— ROART-DCMM —*— DPTree —¢— PACTree

{ z

head invalid

partitioned

[
ptr

tail

fingerprint address

0 16

I crash-consistent I reconstructible

global version

Key takeaway:

(a) Uniform Lookup (b) Uniform Insert (c) Uniform Update (d) Uniform Scan

0

S 48 20 20 8 56 20 8 = DPTree and LB*-Tree achieve

=

- 3] 15¢ 15¢ 6r a2f 15¢ 6 best performance

3 241 10} 10} 4} 281 10} 4}

| | | | al | | = PM allocator matters (PMDK vs.
@]

S oM . . 3] =S 0] L 0 - V) me—— o 0 ROART customized DCMM)

E 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40

— # of threads # of threads # of threads # of threads # of threads # of threads # of threads m Be careful when YOu use

(e) Skewed Lookup (f) Skewed Update (g) Skewed Scan

Hardware transactional Memory

w —V— FPTree —A— LB*"-Tree —— ROART —4#— HOT —<— Masstree

gso 80 80 6 80 80 6 Unifying PM and DRAM indexing:
:5’28 28 28 af ig 28 af = PM indexes can also be effective
%20- , 20} 20} | 2f 20} 20} 2f for DRAM

° 0S5 a0 P 303020 OF 7020300 Cqo 20 3040 Or 03030 a0 O o35 ao 40 Crqo oo a0 | Ccompare to two representative
= # of threads # of threads # of threads # of threads # of threads # of threads # of threads DRAM-optimized indexes

(a) Uniform Lookup (b) Uniform Insert

Throughput under uniform (a—d) and skewed (e-g, self-similar with 80% accesses on 20% of keys) distributions

Mixed Workload Impact of NUMA Effect

(c) Uniform Update

(d) Uniform Scan (e) Skewed Lookup (f) Skewed Update (g) Skewed Scan =

Techniques proposed by PM
indexes may also apply to DRAM

—V¥— FPTree —i— ROART-PMDK —*— DPTree —V— FPTree —— ROART-PMDK —*— DPTree -4- PACTree-NUMA

. —A— LBT-Tree —@— ROART-DCMM —¢— PACTree @ —A— LB*-Tree —@— ROART-DCMM —¢— PACTree
n
3 36 24 20 16 20 6
o
= o7 18} 15} 12} 15} 4}
o 8f 10}
2 18} 12} 10} < al 5 2

B _ B)) :))) : A A ! 1))
S 9 6 S o 017020304080 %1 1020304080 % 1020304080 1 10203040 80
S 0 . 0 . 0 A i© # of threads # of threads # of threads # of threads
IE 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40

(a) Read Heavy

Throughput of mixed workloads (lookups + inserts) under uniform distribution

(b) Balanced

(c) Write Heavy (a) Lookup (b) Insert (c) Update (d) Scan

No index scales well due to additional PM accesses by the directory-based CPU coherence protocol

