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What? Benchmark and evaluate Optane-era Persistent Memory (PM) range indexes
Why? Unclear performance they achieve on real PM hardware (Intel Optane DCPMM)
How? Utilize PiBench* to experiment on eight range indexes under various workloads

Persistent Memory (PM)

Single/Multi-Threaded Experiment Under Various Workloads

Mixed Workload Impact of NUMA Effect
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Key features:
• Byte-addressability
• Near DRAM latency
• Non-volatile
• Large capacity
• Cheaper than DRAM

PM Partners

§ 2 x 20-core (2-socket, 80-hyperthread) Intel Xeon
Gold 6242R clocked at 3.10 GHz, 12 x 32GB DRAM
(384GB), 12 x 128GB DCPMM (1.5TB)
§ Arch Linux kernel 5.14.9, GCC 11.1, glibc 2.34
§ Allocators: jemalloc for DRAM, PMDK for PM
§ PiBench: PM indexes benchmark framework

Ø 8-byte key-value pair
Ø Preload 1M keys
Ø 10s of operations each run

State-Of-The-Art Persistent Memory Range Indexes
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(b) µTree

(c) ROART

(d) PACTree

(d) DPTree

(a) LB+-tree

Throughput under uniform (a–d) and skewed (e–g, self-similar with 80% accesses on 20% of keys) distributions 

Key takeaway:
§ DPTree and LB+-Tree achieve

best performance
§ PM allocator matters (PMDK vs.

ROART customized DCMM)
§ Be careful when you use

Hardware transactional Memory

Unifying PM and DRAM indexing:
§ PM indexes can also be effective

for DRAM
§ Compare to two representative

DRAM-optimized indexes
§ Techniques proposed by PM

indexes may also apply to DRAM

Throughput of mixed workloads (lookups + inserts) under uniform distribution No index scales well due to additional PM accesses by the directory-based CPU coherence protocol 


