Evaluating Persistent Memory Range Indexes: Part Two
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GitHub Repo: https://github.com/sfu-dis/pibench-ep2

What? Benchmark and evaluate Optane-era Persistent Memory (PM) range indexes
Unclear performance they achieve on real PM hardware (Intel Optane DCPMM)
to experiment on eight range indexes under various workloads

Why?

How? Utilize PiBench™

Persistent Memory (PM)

Key features:
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PM Partners

Hardware & Software Configuration

2 x 20-core (2-socket, 80-hyperthread) Intel Xeon
Gold 6242R clocked at 3.10 GHz, 12 x 32GB DRAM
(384GB), 12 x 128GB DCPMM (1.5TB)

Byte-addressability
Near DRAM latency

Non-volatile " Arch Linux kernel 5.14.9, GCC 11.1, glibc 2.34
Large capacity " Allocators: jemalloc for DRAM, PMDK for PM
Cheaper than DRAM = PiBench: PM indexes benchmark framework

» 8-byte key-value pair Dane
» Preload 1M keys ‘PIBQ“C"I

» 10s of operations each run
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State-Of-The-Art Persistent Memory Range Indexes
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Key takeaway:

(a) Uniform Lookup (b) Uniform Insert (c) Uniform Update (d) Uniform Scan
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(e) Skewed Lookup (f) Skewed Update (g) Skewed Scan

Hardware transactional Memory
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(a) Uniform Lookup (b) Uniform Insert

Throughput under uniform (a—d) and skewed (e-g, self-similar with 80% accesses on 20% of keys) distributions

Mixed Workload Impact of NUMA Effect

(c) Uniform Update

(d) Uniform Scan (e) Skewed Lookup (f) Skewed Update (g) Skewed Scan =

Techniques proposed by PM
indexes may also apply to DRAM
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(a) Read Heavy

Throughput of mixed workloads (lookups + inserts) under uniform distribution

(b) Balanced

(c) Write Heavy (a) Lookup (b) Insert (c) Update (d) Scan

No index scales well due to additional PM accesses by the directory-based CPU coherence protocol



